Skip to main content

DIV

#include <iostream>
#include <cstring>
#include <vector>

using namespace std;

const int N = 1001;

bool prime[N] = {true};

int d[1000001];//stores number of divisor
vector<int> p;

void sieve()
{
    for(int i = 0; i <= N; i++)
        prime[i] = true;
    p.push_back(2);
    for(int i = 2; i * i <= 1000; i++)
    {
        if(prime[i])
        {
            for(int j = i * i; j <= 1000; j += i)
            {
                prime[j] = false;
            }
        }

    }

    for(int i = 3; i <= N; i += 2)
    {
        if(prime[i])
            p.push_back(i);
    }

}

bool isPrime(int n)
{
    if(n == 1)
        return false;

    for(int i = 0; i < p.size() && p[i] * p[i] <= n; i++)
    {
        if(n % p[i] == 0)
            return false;
    }

    return true;

}

void divisor()
{
    int num; //number of divisor
    int result;


    for(int i = 2; i <= 1000000; i++)
    {
        result = 1;
        int temp = i;

        for(int j = 0; j < p.size() && p[j] * p[j] <= temp; j++)
        {
            num = 0;
            while((temp % p[j]) == 0)
            {
                num++;
                temp = temp / p[j];

            }

            result *= (num + 1);
        }

        if(temp != 1)
            result *= 2;

        d[i] = result;
    }
}


int main()
{
    sieve();
    divisor();

    int c = 0;
    for(int i = 2; i <= 1000000; i++)
    {

        for(int j = 0; j < p.size() && p[j] * p[j] <= d[i]; j++)
        {
            if(d[i] % p[j] == 0)
            {
                int x = d[i] / p[j];
                if(x != p[j] && isPrime(x))
                {
                    c++;
                    if(c % 9 == 0)
                        cout << i << endl;

                    break;
                }

            }
        }
    }
    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec and it will not cause any problem .     problem may occur if pos[i - 1]< (B -T)*2 as it can me

War of XORs- XORIER

Problem Link #include <iostream> using namespace std; int main() { int t, n, odd, even; cin >> t; while(t--) { cin >> n; int i,arr[n],freq[1100001]={0}; long res = 0; odd = even = 0; for(int i = 0; i < n; i++) { cin >> arr[i]; freq[arr[i]]++; } for(int i = 0; i < n; i++) { if(arr[i] & 1) { odd++; } else { even++; } } for(int i = 0; i < n; i++) { if(arr[i] % 2) { res += odd; } else { res += even; } res -= freq[arr[i] ^ 2]; res -= freq[arr[i]]; } cout << res / 2 << endl; } }

MAIN72

MAIN72 - Subset sum #include <iostream> #include <cstring> using namespace std; bool dp[100001][1001]; int arr[1001]; int main() {     int t, n;     long long int sum;     cin >> t;     while(t--)     {         cin >> n;         memset(dp, false, sizeof(dp));         sum = 0;         for(int i = 0; i < n; i++)         {             cin >> arr[i];             sum += arr[i];         }         for(int i = 0; i < n; i++)             dp[0][i] = true; // 0 sum         for(int i = 1; i < n; i++)             dp[i][0] = false; // sum is i but 0 element         for(long int i = 1; i <= sum; i++)         {             for(int j = 1; j <= n; j ++)             {                 dp[i][j] = dp[i][j - 1];                 if(i >= arr[j - 1])                     dp[i][j] = dp[i][j] || dp[i - arr[j - 1]][j - 1];             }         }         long int result = 0;         for(int i = 1; i <= sum; i++)