Skip to main content

GCJ101BB - Picking Up Chicks

Problem Link

/* explanation
    lets solve the problem only for 2 chicken.
    s[i] = speed of chicken i
    pos[i] = position of chicken i

    if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.

    if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.
    lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.

    for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.
    and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.

    at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.

    if i is pos[i] < B-T then i can reach B before T sec and it will not cause any problem .

    problem may occur if pos[i - 1]< (B -T)*2 as it can meet i at some point and i can slow it down. so lets say both i and i-1 meet at some time t sec(t < T). so pos[i - 1] + 1 = pos[i]. within remaining T - t time i can reach B, so i - 1 can also reach B. at time T - 1 i will be at B-T-1 and i -1 will be at B-T-2 and next sec both can reach B because s[i-1] > s[i].

    and if i and i -1 meet at t sec (t > T) then it is not a problem at all.
    so if a chicken can reach B with in T sec then other chicken need not be replaced. if a chicken cannot reach B within T sec the it has to be swapped.
*/

#include <iostream>

using namespace std;

int main()
{
    int c;
    long long n, k, b, t;
    long long pos[51], speed[51];
    cin >> c;

    for(int i = 1; i <= c; i++)
    {
        cin >> n >> k >> b >> t;
        for(int j = 0; j < n; j++)
        {
            cin >> pos[j];
        }

        for(int j = 0; j < n; j++)
        {
            cin >> speed[j];
        }

        long num = 0;
        long result = 0;
        long swap = 0;

        for(int j = n - 1; j >= 0; j--)
        {
            long long distanceCover = speed[j] * t;
            long long distanceToCover = b - pos[j];

            if(distanceToCover <= distanceCover)
            {
                num++;

                if(swap > 0)
                {
                    result += swap;
                }
            }
            else
            {
                swap++;
            }

            if(num == k)
                break;
        }

        if(num < k)
        {
            cout << "Case #" << i << ": IMPOSSIBLE\n";
        }
        else
        {
             cout << "Case #" << i << ": " << result << endl;
        }

    }
    return 0;
}

Comments

Popular posts from this blog

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Cheese and Random Toppings

Problem Link #include <iostream> #include <vector> #include <cstring> using namespace std; #define LL long long int LL lucas(LL n,LL r,LL p) { LL ans=1,ncr[p][p]; memset(ncr, 0, sizeof ncr); for (int i = 0; i < p; ++i) { ncr[i][0]=1; } for (int i = 1; i < p; ++i) { for (int j = 1; j <= i; ++j) { ncr[i][j]=(ncr[i-1][j] + ncr[i-1][j-1])%p; } } while(n && r) { ans=(ans * ncr[n%p][r%p])%p; n/=p; r/=p; } return ans; } LL fastExpo(LL a, LL b, LL P) {   LL res = 1;   if(b==0) return 1; if(b==1) return a;   while (b) {     if (b & 1) {       res = (res * a) % P;     }     a = (a * a) % P;     b = b >> 1;   }   return res; } int main() { int t; cin>>t; while(t--) { long long int n,r,m,tm,ans=0; cin>>n>>r>>m; tm=m; for (int i = 2; i <= 50; ++i...