Skip to main content

GCJ101BB - Picking Up Chicks

Problem Link

/* explanation
    lets solve the problem only for 2 chicken.
    s[i] = speed of chicken i
    pos[i] = position of chicken i

    if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.

    if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.
    lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.

    for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.
    and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.

    at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.

    if i is pos[i] < B-T then i can reach B before T sec and it will not cause any problem .

    problem may occur if pos[i - 1]< (B -T)*2 as it can meet i at some point and i can slow it down. so lets say both i and i-1 meet at some time t sec(t < T). so pos[i - 1] + 1 = pos[i]. within remaining T - t time i can reach B, so i - 1 can also reach B. at time T - 1 i will be at B-T-1 and i -1 will be at B-T-2 and next sec both can reach B because s[i-1] > s[i].

    and if i and i -1 meet at t sec (t > T) then it is not a problem at all.
    so if a chicken can reach B with in T sec then other chicken need not be replaced. if a chicken cannot reach B within T sec the it has to be swapped.
*/

#include <iostream>

using namespace std;

int main()
{
    int c;
    long long n, k, b, t;
    long long pos[51], speed[51];
    cin >> c;

    for(int i = 1; i <= c; i++)
    {
        cin >> n >> k >> b >> t;
        for(int j = 0; j < n; j++)
        {
            cin >> pos[j];
        }

        for(int j = 0; j < n; j++)
        {
            cin >> speed[j];
        }

        long num = 0;
        long result = 0;
        long swap = 0;

        for(int j = n - 1; j >= 0; j--)
        {
            long long distanceCover = speed[j] * t;
            long long distanceToCover = b - pos[j];

            if(distanceToCover <= distanceCover)
            {
                num++;

                if(swap > 0)
                {
                    result += swap;
                }
            }
            else
            {
                swap++;
            }

            if(num == k)
                break;
        }

        if(num < k)
        {
            cout << "Case #" << i << ": IMPOSSIBLE\n";
        }
        else
        {
             cout << "Case #" << i << ": " << result << endl;
        }

    }
    return 0;
}

Comments

Popular posts from this blog

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...

ANARC09A

ANARC09A - Seinfeld #include <iostream> #include <stack> using namespace std; stack<char> st; int main() {     string s;     int c, k;     k = 1;     while(true)     {         cin >> s;         c = 0;         if(s[0] == '-')             break;         for(int i = 0; i < s.size(); i++)         {             st.push(s[i]);             //stack contains } and { then we can safely remove them from stack             if(st.top() == '}' && st.size() != 1)             {                 char a = st.top();               ...