Skip to main content

AKVQLD03

                           AKVQLD03 - How to Handle the Fans


#include <iostream>
#include <cstring>
#include <cmath>

using namespace std;


void addNode(long long int seg[], int l, int r, int pos, int index, int val)
{
    if(l == r)
    {
        seg[index] += val;
    }
    else
    {
        int mid = (l + r) / 2;

        if(pos >= l && pos <= mid)
        {

            addNode(seg, l, mid, pos, 2 * index + 1, val);
        }
        else
        {
            addNode(seg, mid + 1, r, pos, 2 * index + 2, val);
        }

        seg[index] = seg[2 * index + 1] + seg[2 * index + 2];
    }

}

int findSum(long long int seg[], int l, int r, int qs, int qe, int index)
{

    if(qe < l || qs > r)
        return 0;

    if(qs <= l && qe >= r)
        return seg[index];

    int mid = (l + r) / 2;

    int p1 = findSum(seg, l, mid, qs, qe, 2 * index + 1);
    int p2 = findSum(seg, mid + 1, r, qs, qe, 2 * index + 2);

    return p1 + p2;
}


int main()
{

    long int n, q;
    int  a, b;

    cin >> n >> q;

    cin.get();

    const long int h = ceil(log2(n));

    const long int size = 2 * pow(2 , h);

    long long int seg[size];

    for(int i = 0; i < size - 1; i++)
        seg[i] = 0;



    string st;

    while(q--)
    {
        cin >> st;
        cin >> a >> b;
        cin.get();

        if(st == "add")
        {
            addNode(seg, 0, n - 1, a - 1, 0, b);
        }
        else
        {
            cout << findSum(seg, 0, n - 1, a - 1, b - 1, 0) << endl;
        }
    }

    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec and it will not cause any problem .     problem may occur if pos[i - 1]< (B -T)*2 as it can me

War of XORs- XORIER

Problem Link #include <iostream> using namespace std; int main() { int t, n, odd, even; cin >> t; while(t--) { cin >> n; int i,arr[n],freq[1100001]={0}; long res = 0; odd = even = 0; for(int i = 0; i < n; i++) { cin >> arr[i]; freq[arr[i]]++; } for(int i = 0; i < n; i++) { if(arr[i] & 1) { odd++; } else { even++; } } for(int i = 0; i < n; i++) { if(arr[i] % 2) { res += odd; } else { res += even; } res -= freq[arr[i] ^ 2]; res -= freq[arr[i]]; } cout << res / 2 << endl; } }

MAIN72

MAIN72 - Subset sum #include <iostream> #include <cstring> using namespace std; bool dp[100001][1001]; int arr[1001]; int main() {     int t, n;     long long int sum;     cin >> t;     while(t--)     {         cin >> n;         memset(dp, false, sizeof(dp));         sum = 0;         for(int i = 0; i < n; i++)         {             cin >> arr[i];             sum += arr[i];         }         for(int i = 0; i < n; i++)             dp[0][i] = true; // 0 sum         for(int i = 1; i < n; i++)             dp[i][0] = false; // sum is i but 0 element         for(long int i = 1; i <= sum; i++)         {             for(int j = 1; j <= n; j ++)             {                 dp[i][j] = dp[i][j - 1];                 if(i >= arr[j - 1])                     dp[i][j] = dp[i][j] || dp[i - arr[j - 1]][j - 1];             }         }         long int result = 0;         for(int i = 1; i <= sum; i++)