Skip to main content

Chef and Sub Array

                      Chef and Sub Array



#include <iostream>
#include <stdio.h>
#define sf(i) scanf("%d", &i)
#define pf(i) printf("%d\n", i)

using namespace std;

int n, k, p;
int a[100005], b[300005];
int sum[300005], tree[700005];
string s;

void buildTree(int index, int s, int e)
{
    if(s == e)
    {
        tree[index] = sum[s];
    }
    else
    {
        int mid = (s + e) / 2;
        buildTree(2 * index + 1, s, mid);
        buildTree(2 * index + 2, mid + 1, e);

        tree[index] = max(tree[2 * index + 1], tree[2 * index + 2]);
    }
}

int query(int index, int s, int e, int qs, int qe)
{
    if(qs > e || qe < s)
        return 0;

    if(qs <= s && qe >= e)
        return tree[index];

    int mid = (s + e) / 2;
    int left = query(2 * index + 1, s, mid, qs, qe);
    int right = query(2 * index + 2, mid + 1, e, qs , qe);

    return max(left, right);

}
int main()
{
    sf(n), sf(k), sf(p);
    if(k > n)
        k = n;

    for(int i = 0; i < n; i++)
    {
        sf(a[i]);
        b[i] = b[i + n] = a[i];
    }

    cin >> s;

    sum[0] = b[0];

    for(int i = 1; i < k; i++)
    {
        sum[i] = sum[i - 1] + b[i];
    }
    for(int i = k; i < 2 * n; i++)
    {
        sum[i] = sum[i - 1] - b[i - k] + b[i];
    }

    buildTree(0, 0, 2 * n - 1);

    int index = n;
    for(int i = 0; i < p; i++)
    {
        if(s[i] == '!')
        {
            index--;
            if(index == 0)
                index = n;
        }
        else
        {
            int ans;
            if(k < n)
            {
                ans = query(0, 0, 2 * n - 1, index + k - 1, index + n - 1);
            }
            else
            {
                ans = query(0, 0, 2 * n - 1, n, 2 * n - 1);
            }
            pf(ans);
        }
    }
    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...