Skip to main content

IPC Trainers : IPCTRAIN

Problem Link

#include <iostream>
#include <vector>
#include <cstring>
#include <algorithm>
#include <set>
using namespace std;

const int N = 1e5;

struct node
{
    int trainer;
    int day;
    int sadness;

    node()
    {

    }
    node(int t, int d, int s)
    {
        trainer = t;
        day = d;
        sadness = s;
    }
};

bool comparator(node a, node b)
{
    return a.sadness > b.sadness;
}
int main()
{
    long long result;
    int test, n, D, d, t, s;
    int freq[N + 1], sad[N + 1];
    vector<node> v;
    node temp;

    cin >> test;

    while(test--)
    {
        cin >> n >> D;
        memset(freq, 0, sizeof freq);
        memset(sad, 0, sizeof sad);
        result = 0;

        v.clear();
        set<int> daySet;

        for (int i = 0; i < D; i++) {
daySet.insert(i);
}

        for(int i = 0; i < n; i++)
        {
            cin >> d >> t >> s;
            freq[i] = t;
            sad[i] = s;
            v.push_back(node(i, d - 1, s));
        }

        sort(v.begin(), v.end(), comparator);

        for(int j = 0; j < n; j++)
        {
            temp = v[j];

            while(freq[temp.trainer] > 0)
            {
                auto iter = daySet.lower_bound(temp.day);
                if(iter == daySet.end())
                    break;
                else
                {
                    freq[temp.trainer]--;
                    daySet.erase(iter);
                }
            }
        }

        for(int i = 0; i < n; i++)
        {
            result += (long long)sad[i] * (long long) freq[i];
        }

        cout << result << endl;
    }


    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...