Skip to main content

PARADOX

Problem Link

#include <iostream>
#include <vector>
using namespace std;

bool isParadox;
int stmt[101]; // 0 if stmt[i] is false, 1 if true,  -1 if not yet decided
int p[101]; // store root of a component

void dfs(int s, vector<pair<int,int> > graph[], int root)
{
 
    p[s] = root;
    for(int i = 0; i < graph[s].size(); i++)
    {
        int v = graph[s][i].first;
        int c = graph[s][i].second;
        if(stmt[v] == -1)
        {
            //if stmt s is true then whatever it says about other stmt is true
            //else whatever it says is false. so we have to take its complement
            stmt[v] = stmt[s] == 1 ? c : 1 - c;
         
            dfs(v, graph, root);
        }
        else
        {
            //if a stmt is already marked as true or false
            //then we have to check whether it conficts with current marking
            int vertextColor = stmt[s] == 1 ? c : 1 - c;
            if(stmt[v] != vertextColor)
            {
                //we get conflict in marking a node as true or false
                //so it is paradox
                isParadox = true;
                return;
            }
        }
    }
}
int main()
{
    int n, s;
    string st;
    cin >> n;
    while(n)
    {
        // store stmt no and its truth value
        vector<pair<int,int> > graph[n + 1];
        isParadox = false;
        for(int i = 0; i < n + 1; i++)
        {
            stmt[i] = -1;
            p[i] = i;
        }
        for(int i = 1; i <= n; i++)
        {
            cin >> s >> st;
         
            if(st.compare("false") == 0)
            {
                graph[i].push_back(make_pair(s, 0));
            }
            else
            {
                graph[i].push_back(make_pair(s, 1));
            }
         
        }

        for(int vertex = 1; vertex <= n; vertex++)
        {
            isParadox = false;
            if(stmt[vertex] == -1)
            {
                //assume stmt is true and find truth value of other stmt
                stmt[vertex] = 1;
                dfs(vertex, graph, vertex);
            }
            if(isParadox)
            {
                //if initial assumption is not correct reset all truth values of that component
                //assume stmt is false now and find truth value of other stmt
                isParadox = false;
                for(int j = 1; j <= n; j++)
                {
                    if(p[j] == vertex)
                    {
                        stmt[j] = -1;
                    }
                }
                // assume stmt is false now
                stmt[vertex] = 0;
                dfs(vertex, graph, vertex);
            }

            //if neither of the assumption satisfies then it is a paradox
            if(isParadox)
            {
                cout << "PARADOX\n";
                break;
            }
        }

        if(!isParadox)
        {
            cout << "NOT PARADOX\n";
        }

        cin >> n;
    }
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Cheese and Random Toppings

Problem Link #include <iostream> #include <vector> #include <cstring> using namespace std; #define LL long long int LL lucas(LL n,LL r,LL p) { LL ans=1,ncr[p][p]; memset(ncr, 0, sizeof ncr); for (int i = 0; i < p; ++i) { ncr[i][0]=1; } for (int i = 1; i < p; ++i) { for (int j = 1; j <= i; ++j) { ncr[i][j]=(ncr[i-1][j] + ncr[i-1][j-1])%p; } } while(n && r) { ans=(ans * ncr[n%p][r%p])%p; n/=p; r/=p; } return ans; } LL fastExpo(LL a, LL b, LL P) {   LL res = 1;   if(b==0) return 1; if(b==1) return a;   while (b) {     if (b & 1) {       res = (res * a) % P;     }     a = (a * a) % P;     b = b >> 1;   }   return res; } int main() { int t; cin>>t; while(t--) { long long int n,r,m,tm,ans=0; cin>>n>>r>>m; tm=m; for (int i = 2; i <= 50; ++i...