Skip to main content

Max Range Queries - MAXREMOV

Problem Link

#include <iostream>
#include <vector>
#include <cstdio>
using namespace std;

const int N = 100001;
int arr[N];
vector<pair<int, int> > range;
int preK[N]; // ith position store number of values equal to k till index i
int preK1[N]; // ith position store number of values equal to k + 1 till index i

void resetArray()
{
range.clear();
    for(int i = 0; i < N; i++)
    {
        arr[i] = 0;
        preK[i] = preK1[i] = 0;
    }

}

int main()
{
    int t, n, k, l, r, count, maxCount, maxN, i;
    cin >> t;

    while(t--)
    {
        scanf("%d%d", &n,&k);
        count = maxCount = maxN = 0;

        resetArray();

        for(i = 1; i <= n; i++)
        {
            scanf("%d%d", &l,&r);
            range.push_back(make_pair(l, r));
            maxN = max(maxN, r);

            arr[l] += 1;

            if(r + 1 < N)
            {
            arr[r + 1] -= 1;
            }
           
        }

      // build array from range updates
        for(i = 1; i <= maxN; i++)
        {
            count += arr[i];
            arr[i] = count;
        }

        for(i = 1; i <= maxN; i++)
        {
        preK[i] = preK[i - 1] + (arr[i] == k ? 1 : 0);
        preK1[i] = preK1[i - 1] + (arr[i] == k + 1 ? 1 : 0);
        }

        int s = range.size();
        for(i = 0; i < s; i++)
        {
        l = range[i].first;
        r = range[i].second;

        // count will be equal to number of K in range [0, l - 1] +
        // number of K + 1 in range [l, r] +
        // number of K in range [r + 1, n]
       
        count = preK[l - 1] + preK1[r] - preK1[l - 1] + preK[maxN] - preK[r];

        maxCount = max(maxCount, count);
        }

        printf("%d\n", maxCount);
    }

    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...