Skip to main content

BACKPACK - Dab of Backpack

Problem Link
Ref Link

#include <iostream>
#include <vector>
using namespace std;
struct node
{
    int vol,profit, p;
};

int main()
{
    int t, n, vmax;
    long dp[32001][61];
    node parent[62];
    vector<node> child[62];

    cin >> t;
    while(t--)
    {
        cin >> vmax >> n;
     
        for(int i = 0; i < 62; i++)
        {
            parent[i].vol = -1;
            child[i].clear();
        }

        for(int i = 1; i <= n; i++)
        {
            node temp;
            cin >> temp.vol >> temp.profit >> temp.p;
            if(temp.p == 0)
            {
                parent[i] = temp;
            }
            else
            {
                child[temp.p].push_back(temp);
            }
        }
 
        for(int i = 0; i <= vmax; i++)
        {
            for(int j = 0; j <= n; j++)
            {
                if(i == 0 || j == 0)
                {
                    dp[i][j] = 0;
                    continue;
                }
                if(parent[j].vol != -1)
                {
                    int vol = parent[j].vol;
                    int tempVol, tempProfit;
                    int p = parent[j].profit;

                    dp[i][j] = dp[i][j - 1];

                    //consider only main good and check if it gives max value
                    if(vol <= i)
                    {
                        dp[i][j] = max(dp[i][j], dp[i - vol][j - 1] + vol * p);
                    }

                    //consider single attachment and check if it gives max value
                    for(int k = 0; k < child[j].size(); k++)
                    {
                        tempVol = vol + child[j][k].vol;
                        tempProfit = vol * p + child[j][k].vol * child[j][k].profit;
                        if(tempVol <= i)
                        {
                            dp[i][j] = max(dp[i][j], dp[i - tempVol][j - 1] + tempProfit);
                        }
                    }

                    // if main good has 2 attachment consider both and
                    //check if it gives max value
                    if(child[j].size() == 2)
                    {
                        tempVol = vol + child[j][0].vol + child[j][1].vol;
                        tempProfit = vol * p + child[j][0].vol * child[j][0].profit +
                                              child[j][1].vol * child[j][1].profit;
                        if(tempVol <= i)
                        {
                            dp[i][j] = max(dp[i][j], dp[i - tempVol][j - 1] + tempProfit);
                        }
                    }
                }
                else
                {
                    dp[i][j] = dp[i][j - 1];
                }
            }
        }

        cout << dp[vmax][n] << endl;
    }
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...