Skip to main content

GSS1

                                                     GSS1

                                                                segment tree


#include <iostream>
#include <stdio.h>
using namespace std;

struct node
{
    long bestSum, leftSum, rightSum, totalSum;
};
int n;
long t;
node seg[200003];
long arr[50003];

node combine(node &lc, node &rc)
{
    node temp;
    temp.totalSum = lc.totalSum + rc.totalSum;
    temp.leftSum = max(lc.leftSum, lc.totalSum + rc.leftSum);
    temp.rightSum = max(rc.rightSum, rc.totalSum + lc.rightSum);
    temp.bestSum = max(lc.rightSum + rc.leftSum, max(lc.bestSum, rc.bestSum));

    return temp;
}
void buildTree(int l, int r, int index)
{
    if(l == r)
    {
        seg[index].bestSum = seg[index].rightSum = seg[index].leftSum = seg[index].totalSum = arr[l];
    }
    else
    {
        int mid =  l + ((r - l) >> 1);
        int lchild = (index << 1) + 1;
        int rchild = (index << 1) + 2;
        buildTree(l, mid, lchild);
        buildTree(mid + 1, r, rchild);

        seg[index] = combine(seg[lchild], seg[rchild]);
    }
}

node query(int l, int r, int qs, int qe, int index)
{
    if(qs <= l && qe >= r)
        return seg[index];

    int mid = l + ((r - l) >> 1);
    int lchild = (index << 1) + 1;
    int rchild = (index << 1) + 2;
    if(qe <= mid)
        return query(l, mid, qs, qe, lchild);
    if(qs > mid)
        return query(mid + 1, r, qs, qe, rchild);

    node lc = query(l, mid, qs, qe, lchild);
    node rc = query(mid + 1, r, qs, qe, rchild);

    return combine(lc, rc);
}

int main()
{
    int m, x, y;

    scanf("%d",&n);
    for(int i = 0; i < n; i++)
        scanf("%ld",&arr[i]);

    buildTree(0, n - 1, 0);
    scanf("%d",&m);
    for(int i = 0; i < m; i++)
    {
        scanf("%d",&x);
        scanf("%d",&y);
        t = query(0, n - 1, x - 1, y - 1, 0).bestSum;
        printf("%ld\n", t);
    }
    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...