Skip to main content

Sereja and Brackets

                                Sereja and Brackets

                                  segment tree

#include <iostream>
#include <cmath>
#include <cstring>

using namespace std;

string s;

struct node
{

    long int len; //max length of matched brackets
    int tn, tp; // tp = total number of '(' brackets

                //tn = total number of ')' brackets
};

node func(node a, node b)
{
    node temp;

    int len = min(a.tp, b.tn);

    temp.len = a.len + b.len + 2 * len;
    temp.tp = a.tp + b.tp - len;
    temp.tn = a.tn + b.tn - len;

    return temp;
}

void buildTree(node seg[], int l, int r, int index)
{
    if(l == r)
    {
        seg[index].len = seg[index].tp = seg[index].tn = 0;
        if(s[l] == ')')
        {
            seg[index].tn = 1;
        }
        else
        {
            seg[index].tp = 1;
        }
     }
     else
     {
         int mid = (l + r) / 2;
         buildTree(seg, l, mid, 2 * index + 1);
         buildTree(seg, mid + 1, r, 2 * index + 2);

         seg[index] = func(seg[2 * index + 1], seg[2 * index + 2]);
     }
}

node query(node seg[], int l, int r, int qs, int qe, int index)
{
    if((qs > r || qe < l))
    {
        node temp;
        temp.len = temp.tp = temp.tn = 0;

        return temp;
    }

    else if(qs <= l && qe >= r)
        return seg[index];

    else
    {
        int mid = (l + r ) / 2;

        node p1 = query(seg, l, mid, qs, qe, 2 * index + 1);
        node p2 = query(seg, mid + 1, r, qs, qe, 2 * index + 2);

        node temp = func(p1, p2);
        return temp;
    }

}

int main()
{
    int m, l, r;

    cin >> s;

    long int size = 4 * s.size();

    node seg[size];

    buildTree(seg, 0, s.size() - 1, 0);

    cin >> m;

    while(m--)
    {
        cin >> l >> r;

        node temp = query(seg, 0, s.size() - 1, l - 1, r - 1, 0);
        cout << temp.len << endl;
    }
    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...