Skip to main content

Yet Another Cute Girl - PRETNUM

Problem Link

#include <iostream>
#include <cstring>
#include <cmath>
#include <vector>
using namespace std;
#define LL long long

const int N = 1000010;
bool prime[N + 1];
vector<int> v;

void sieve()
{
for(int i = 2; i <= N; i++)
{
prime[i] = true;
}

for(int i = 2; i * i <= N; i++)
{
if(prime[i])
{
for(int j = i * i; j <= N; j += i)
{
prime[j] = false;
}
}
}

v.push_back(2);
for(int i = 3; i <= N; i += 2)
{
if(prime[i])
{
v.push_back(i);
}
}
}

LL getNumDiv(LL num)
{
    /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be
        (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)
        so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...
        if n is a prime number number then number of divisors of n^2 would be 3.
    */

LL res = 1;
for(int i = 0; i < v.size() && v[i] * v[i] <= num; i++)
{
if(num % v[i] == 0)
{
int count = 0;
while(num % v[i] == 0)
{
count++;
num /= v[i];
}

res = res * (2 * count + 1LL);
}

}

if(num != 1)
res *= 3;

return res;
}

LL segmented_sieve(LL a, LL b)
{
    int count = 0;

if(b<2) return 0;
if(a < 3)
    {
        a = 3;
        count++;
    }

    if(a % 2 == 0)
    {
        a++;
    }

bool prime1[b - a + 2];
memset(prime1, true, sizeof prime1);

for(int i = 0; i < v.size() && v[i] * v[i] <= b; i++)
{
LL low = floor(a / v[i]) * v[i];
if(low < a){
low += v[i];
}

        //cout << "Low value = " << low << endl;
for(LL j = low; j <= b; j += v[i])
{
if(j != v[i])
prime1[j - a] = false;
}
}

for(int i = 0; i <= b - a; i += 2)
{
    //cout << "prime = " << i + a << "value = " << prime1[i] << endl;
if(prime1[i])
count++;
}

   // cout << " count = " << count << endl;
return count;
}


int main()
{
int t;

LL l, r;
int res;
sieve();
cin >> t;
while(t--)
{
cin >> l >> r;

if(l == 1)
l++;
res = 0;

res = segmented_sieve(l, r);

LL k = sqrt(l);
for(LL i = k; ; i++)
{
if(i * i > r)
break;
if(i * i >= l)
{
if(prime[getNumDiv(i)])
{
res++;
}
}
}

cout << res << endl;
}

return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Cheese and Random Toppings

Problem Link #include <iostream> #include <vector> #include <cstring> using namespace std; #define LL long long int LL lucas(LL n,LL r,LL p) { LL ans=1,ncr[p][p]; memset(ncr, 0, sizeof ncr); for (int i = 0; i < p; ++i) { ncr[i][0]=1; } for (int i = 1; i < p; ++i) { for (int j = 1; j <= i; ++j) { ncr[i][j]=(ncr[i-1][j] + ncr[i-1][j-1])%p; } } while(n && r) { ans=(ans * ncr[n%p][r%p])%p; n/=p; r/=p; } return ans; } LL fastExpo(LL a, LL b, LL P) {   LL res = 1;   if(b==0) return 1; if(b==1) return a;   while (b) {     if (b & 1) {       res = (res * a) % P;     }     a = (a * a) % P;     b = b >> 1;   }   return res; } int main() { int t; cin>>t; while(t--) { long long int n,r,m,tm,ans=0; cin>>n>>r>>m; tm=m; for (int i = 2; i <= 50; ++i...