Skip to main content

D-QUERY

                                             D-Query

                                           segment tree + offline method

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <map>
#define sf(i) scanf("%d", &i)
#define pf(i) printf("%d\n", i)

using namespace std;

const int N = 30001;
const int Q = 200001;

struct node
{
    int l, r;
    int pos,
    int val;
};

int n, q;
node arr[N + Q];
int result[Q];
int seg[4 * N];
map<int, int> last_pos;

node makenode(int l, int r, int pos, int val)
{
    node temp;
    temp.l = l;
    temp.r = r;
    temp.pos = pos;
    temp.val = val;

    return temp;
}

void update(int l, int r, int index, int pos, int val)
{
    if(l == r)
    {
        seg[index] = val;
    }
    else
    {
        int mid = (r + l) / 2;
        if(pos <= mid)
        {
            update(l, mid, 2 * index, pos, val);
        }
        else
        {
            update(mid + 1, r, 2 * index + 1, pos, val);
        }
        seg[index] = seg[index << 1] + seg[(index << 1) + 1];
    }
}

int query(int l, int r, int index, int qs, int qe)
{
    if(qs > r || qe < l)
        return 0;
    if(qs <= l && qe >= r)
        return seg[index];

    int mid = (l + r) / 2;
    int a = query(l, mid, 2 * index, qs, qe);
    int b = query(mid + 1, r, 2 * index + 1, qs, qe);
    return a + b;
}

bool comp(node a, node b)
{
    if(a.pos == b.pos)
    {
        return a.r < b.r;
    }
    return (a.pos < b.pos);
}

int main()
{
    int l, r;
    sf(n);
    int index = 0;
    int temp;
    for(int i = 1; i <= n; i++)
    {
        sf(temp);
        arr[index++] = makenode(-1, -1, i, temp);
    }

    sf(q);
    for(int i = 1; i <= q; i++)
    {
        sf(l), sf(r);
        arr[index++] = makenode(l, r, r, i); // stores position as value in case of query
    }

    sort(arr, arr + index, comp);

    for(int i = 0; i < index; i++)
    {
        if(arr[i].l == -1 && arr[i].r == -1)
        {
            if(last_pos[arr[i].val] == 0)
            {
                update(1, n, 1, arr[i].pos, 1); //if value does not exist update the pos with 1
            }
            else
            {
                update(1, n, 1, last_pos[arr[i].val], 0); // if value already exist then update the old pos with 0
                update(1, n, 1, arr[i].pos, 1); // update the new pos with 1
            }
            last_pos[arr[i].val] = arr[i].pos; // update the last position array
        }
        else
        {
            int ans = query(1, n, 1, arr[i].l, arr[i].r);
            result[arr[i].val] = ans;
        }
    }

    for(int i = 1; i <= q; i++)
    {
        pf(result[i]);
    }

    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...