Skip to main content

FREQUENT

FREQUENT

                                                        segment tree

#include <iostream>
#include <algorithm>
#include <stdio.h>

#define sf(i) scanf("%d", &i)
#define pf(i) printf("%d\n", i)
#define pii pair<int, int>
#define mp make_pair
#define f first // value
#define s second //frequency
#define FOR(a, b) for(int i = a; i < b; i++)

using namespace std;

const int N = 100001;

struct node
{
    pii m;
    pii l;
    pii r;
};

int n, q;
int arr[N];
node seg[4 * N];

node combine(node &a, node &b)
{
    node res;

    if(a.l.f == b.r.f) //if all the elements are same
    {
        res.l.f = res.r.f = res.m.f = a.l.f;
        res.l.s = res.r.s = res.m.s = a.l.s + b.r.s;
    }
    else
    {
        res.l = a.l;
        res.r = b.r;

        if(a.l.f == b.l.f) //if first element of left is same as first element of right
        {
            res.l.s = a.l.s + b.l.s;
        }
        if(a.r.f == b.r.f)
        {
            res.r.s = a.r.s + b.r.s;
        }

        if(a.m.s > b.m.s)
            res.m = a.m;
        else
            res.m = b.m;

       if(a.r.f == b.l.f){
            int temp = a.r.s + b.l.s;
            if(temp > res.m.s){
                res.m.f = a.r.f;
                res.m.s = temp;
            }
       }
    }

    return res;
}

void buildTree(int l, int r, int index)
{
    if(l == r)
    {
        seg[index].m = mp(arr[l], 1);
        seg[index].l = mp(arr[l], 1);
        seg[index].r = mp(arr[l], 1);
    }
    else
    {
        int mid = (l + r) / 2;
        buildTree(l, mid, index * 2);
        buildTree(mid + 1, r, (index * 2) + 1);

        seg[index] = combine(seg[2 * index], seg[2 * index + 1]);
    }
}

node query(int l, int r, int qs, int qe, int index)
{
    if(qs <= l && (qe >= r))
        return seg[index];

    int mid = (l + r) / 2;
    if(qe <= mid)
    {
        return query(l, mid, qs, qe, 2 * index);
    }
    if(qs > mid)
    {
        return query(mid + 1, r, qs, qe, 2 * index + 1);
    }

    node a = query(l, mid, qs, qe, 2 * index);
    node b = query(mid + 1, r, qs, qe, 2 * index + 1);

    return combine(a, b);
}

int main()
{
    int qs, qe;
    while(sf(n) == 1)
    {
        if(n == 0)
            break;
        sf(q);
        FOR(1, n + 1)
        {
            sf(arr[i]);
        }

        buildTree(1, n, 1);

        FOR(0, q)
        {
            sf(qs);
            sf(qe);
            node result = query(1, n, qs, qe, 1);
            pf(result.m.s);
        }
    }
    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...