Skip to main content

ARBITRAG - Arbitrage

Problem Link

#include <iostream>
#include <map>
#include <vector>
using namespace std;

struct edge
{
     int s, d;
     double c;
};

map<string, int> nodes;
double v[50];
vector<edge> e;

bool bellmanFord(int s, int n)
{
     v[s] = 1;

     int source, dest;
     double rate;

     for(int j = 0; j < n - 1; j++)
     {
          for(int i = 0; i < e.size(); i++)
          {
               source = e[i].s;
               dest = e[i].d;
               rate = e[i].c;

               if(v[dest] < v[source] * rate)
               {
                    v[dest] = v[source] * rate;
               }
          }
     }

     for(int i = 0; i < e.size(); i++)
     {
               source = e[i].s;
               dest = e[i].d;
               rate = e[i].c;

               if(v[dest] < v[source] * rate)
               {   
                    v[dest] = v[source] * rate;
                    return true;
               }
     }

     return false;
}

int main()
{
     string a, b, c;
     int i, j, n, m, source, dest;
     double rate;
     int t = 1;
     bool result;

     while(true)
     {
          nodes.clear();
          e.clear();
          result = false;

          cin >> n;

          if(n == 0)
               break;

          for(i = 0; i < n; i++)
          {
               cin >> a;
               nodes[a] = i;
          }

          for(i = 0; i < n; i++)
          {
               v[i] = 0.0;
          }

          cin >> m;
          for(i = 0; i < m; i++)
          {
               cin >> a >> rate >> b;
               source = nodes[a];
               dest = nodes[b];

               edge temp;
               temp.s = source;
               temp.d = dest;
               temp.c = rate;
               e.push_back(temp);
          }

          for(int i = 0; i < n; i++)
          {
               if(v[i] == 0)
               {
                    v[i] = 1;
                    result = bellmanFord(i, n);
                    if(result)
                    {
                         break;
                    }
               }
          }

          cout << "Case " << t << ": ";
          if(!result)
               cout << "No" << endl;
          else
               cout << "Yes" << endl;
          t++;

     }
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...