Skip to main content

SUBMERGE - Submerging Islands


Problem Link

#include <iostream>
#include <vector>
#include <set>
using namespace std;

const int N = 10001;
vector<int> graph[N];
set<int> res;
int parent[N], dis[N], low[N];
bool visited[N];
int n, m, u, v, value;

void dfs(int source)
{
        int dest, children;
        children = 0;
        visited[source] = true;
        dis[source] = low[source] = ++value;

        for(int i = 0; i < graph[source].size(); i++)
        {
                dest = graph[source][i];
                if(!visited[dest])
                {
                        children++;
                        parent[dest] = source;
                        dfs(dest);

                        low[source] = min(low[source], low[dest]);

                        if(parent[source] == -1 && children > 1)
                        {
                                res.insert(source);
                        }
                        if(parent[source] != -1 && low[dest] >= dis[source])
                        {     
                                res.insert(source);
                        }
                }
                else if(dest != parent[source])
                {
                        low[source] = min(low[source], dis[dest]);
                }
        }
}

int main()
{
        while(true)
        {
                cin >> n >> m;
                if(n == 0 && m == 0)
                        break;

                value = 0;
                res.clear();
                for(int i = 0; i < N; i++)
                {
                        visited[i] = false;
                        parent[i] = i;
                        graph[i].clear();
                }

                while(m--)
                {
                        cin >> u >> v;
                        graph[u].push_back(v);
                        graph[v].push_back(u);
                }

                parent[1] = -1;

                dfs(1);

                cout << res.size() << endl;
        }
       
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...