Skip to main content

Forming Quiz Teams

                        Forming Quiz Teams

                                                      dp + bitmasking

Problem Link 


#include <iostream>
#include <cstdio>
#include <math.h>
#include <cstring>

#define sf(a) scanf("%d", &a)
#define REP(i, n) for(int i = 0; i < n; i++)

using namespace std;

int n, posx, posy;
char name[21];

double dist[17][17];
double dp[1 << 16];
int xy[17][2];

double solve(int bits)
{

    if(dp[bits] != -1)
        return dp[bits];

    if(bits == (1 << n) - 1)
        return 0;

    double ans = 1 << 30; // random big number

    for(int i = 0; i < n; i++)
    {
        if(!(bits & (1 << i)))
        {
            for(int j = i + 1; j < n; j++)
            {
                if(!(bits & (1 << j)))
                {
                    ans = min(ans, solve(bits | (1 << i) | (1 << j)) + dist[i][j]);
                }

            }
        }

    }

    return dp[bits] = ans;
}

int main()
{
    int k = 1;
    while(true)
    {
        sf(n);
        if(n == 0)
            break;

        n = 2 * n;

        REP(i, n)
        {
            scanf("%s", name);
            sf(posx);
            sf(posy);

            xy[i][0] = posx;
            xy[i][1] = posy;
        }

        for(int i = 0; i < n; i++)
        {
            for(int j = i + 1; j < n; j++)
            {
                double x = (xy[i][0] - xy[j][0]) * (xy[i][0] - xy[j][0]);
                double y = (xy[i][1] - xy[j][1]) * (xy[i][1] - xy[j][1]);

                dist[i][j] =  dist[j][i] = sqrt(x + y);
            }
        }

        for(int i = 0; i < (1 << 16); i++)
        {
            dp[i] = -1;
        }

        double ans = solve(0);
        printf("Case %d: %.2f\n",k++, ans);
    }
    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Cheese and Random Toppings

Problem Link #include <iostream> #include <vector> #include <cstring> using namespace std; #define LL long long int LL lucas(LL n,LL r,LL p) { LL ans=1,ncr[p][p]; memset(ncr, 0, sizeof ncr); for (int i = 0; i < p; ++i) { ncr[i][0]=1; } for (int i = 1; i < p; ++i) { for (int j = 1; j <= i; ++j) { ncr[i][j]=(ncr[i-1][j] + ncr[i-1][j-1])%p; } } while(n && r) { ans=(ans * ncr[n%p][r%p])%p; n/=p; r/=p; } return ans; } LL fastExpo(LL a, LL b, LL P) {   LL res = 1;   if(b==0) return 1; if(b==1) return a;   while (b) {     if (b & 1) {       res = (res * a) % P;     }     a = (a * a) % P;     b = b >> 1;   }   return res; } int main() { int t; cin>>t; while(t--) { long long int n,r,m,tm,ans=0; cin>>n>>r>>m; tm=m; for (int i = 2; i <= 50; ++i...