Skip to main content

Twenty Questions

                                 Twenty Questions

                                                 DP + bitmasking


#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>

using namespace std;

int F[128]; //feature set
int dp[1 << 11][1 << 11]; //set of question and answer
//denotes bitmask of question and answer

int n, m;

int solve(int Q, int A)
{
    if(dp[Q][A] != -1)
        return dp[Q][A];

    int nObjects = 0; //number of objects remaining after asking Q

    for(int i = 0; i < n; i++)
    {
        if((F[i] & Q) == A)
            nObjects++;
    }

    if(nObjects <= 1)
    {
        return dp[Q][A] = 0;
    }

    int nQuestions = m + 1;

    //one by one ask each question and take the min number o question required to identify each object
    for(int i = 0; i < m; i++)
    {
        if((Q & (1 << i)) == 0) //ith question is not yet asked
        {
            nQuestions = min(nQuestions, 1 + max(solve(Q | (1 << i), A),solve(Q | (1 << i), A | (1 << i))));
            //solve(Q | (1 << i), A) denotes number of objects which 0 at ith position after asking ith uestion
            //solve(Q | (1 << i), (A | (1 << i))) denotes number of objects which 1 at ith positoin after asking ith question
        }
    }

    return dp[Q][A] = nQuestions;
}
int main()
{
   while(cin >> m >> n, !(m == 0 && n == 0))
   {
       for(int i = 0; i < n; i++)
       {
           string s;
           cin >> s;

           int feature = 0;

           for(int j = 0; j < m; j++)
           {
               feature |= (s[j] - '0') << j;
           }

           F[i] = feature;
       }

       memset(dp, -1, sizeof(dp));

       cout << solve(0, 0) << endl;
   }
    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...