Skip to main content

Jogging Trails

                                      Jogging Trails

                                                       bitwise DP 


#include <iostream>
#include <cstring>
#include <climits>
#include <cstdio>

#define INF INT_MAX
#define sf(a) scanf("%d", &a)

#define set(b, pos) ( b | (1 << pos) )
#define off(b, pos) ( b & ~( 1 << pos) )
#define test(b, pos) (b & (1 << pos) )

using namespace std;

int v, e, st, en, wt, weight, bits;

int graph[15][15];
int deg[15]; //stores degree of a node
int memo[1 << 15];

int solve(int bits)
{
    if(memo[bits] >= 0)
        return memo[bits];

    int ans = INF;
    int b;

    for(int i = 0; i < v; i++)
    {
        for(int j = i + 1; j < v; j++)
        {
            if(test(bits, i) && test(bits, j))
            {
                b = bits;
                b = off(b, i);
                b = off(b, j);

                ans = min(ans, solve(b) + graph[i][j]);
            }
        }
    }

    return memo[bits] = ans;
}

//finds the shortest distance between every node
void floyd()
{
    for(int k = 0; k < v; k++ )
    {
        for(int i = 0; i < v; i++ )
        {
            for(int j = 0; j < v; j++ )
            {
                if(graph[i][k] != INF && graph[k][j] != INF)
                    graph[i][j] = min(graph[i][k]+graph[k][j], graph[i][j]);
            }
        }
    }
}


int main()
{
    while(scanf("%d %d,", &v, &e) == 2)
    {
        for(int i = 0; i < v; i++)
        {
            for(int j = 0; j < v; j++)
            {
                graph[i][j] = INF;
            }
        }

        memset(deg, 0, sizeof(deg));
        weight = 0;
        bits = 0;

        for(int i = 0; i < e; i++)
        {
            sf(st); sf(en); sf(wt);

            st--, en--;

            graph[st][en] = graph[en][st] = min(graph[st][en], wt);

            weight += wt;

            deg[st]++, deg[en]++;
        }

        floyd();

        //sets 1 for each node that has odd degree
        for(int i = 0; i < v; i++)
        {
            if(deg[i] & 1)
            {
                bits = set(bits, i);
            }
        }

        memset(memo, -1, sizeof(memo));
        memo[0] = 0;

        weight += solve(bits);

        cout << weight << endl;
    }

    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Cheese and Random Toppings

Problem Link #include <iostream> #include <vector> #include <cstring> using namespace std; #define LL long long int LL lucas(LL n,LL r,LL p) { LL ans=1,ncr[p][p]; memset(ncr, 0, sizeof ncr); for (int i = 0; i < p; ++i) { ncr[i][0]=1; } for (int i = 1; i < p; ++i) { for (int j = 1; j <= i; ++j) { ncr[i][j]=(ncr[i-1][j] + ncr[i-1][j-1])%p; } } while(n && r) { ans=(ans * ncr[n%p][r%p])%p; n/=p; r/=p; } return ans; } LL fastExpo(LL a, LL b, LL P) {   LL res = 1;   if(b==0) return 1; if(b==1) return a;   while (b) {     if (b & 1) {       res = (res * a) % P;     }     a = (a * a) % P;     b = b >> 1;   }   return res; } int main() { int t; cin>>t; while(t--) { long long int n,r,m,tm,ans=0; cin>>n>>r>>m; tm=m; for (int i = 2; i <= 50; ++i...