Skip to main content

Pebble Solitaire

                                  Pebble Solitaire

                                                DP + bitmasking


#include <stdio.h>
#include <string.h>
#define min(a,b) a > b ? b: a

void on( int &mask ,int pos){
     mask |= ( 1 << pos) ;
}
void  off(int &mask,int pos){
    mask = mask & ~( 1 << pos) ;
}
bool check( int mask , int pos ){
     return bool( mask & ( 1 << pos) ) ;
}
int dp[ 1<<12 + 5 ] ;

int solve( int mask)
{
    int &ret = dp[mask];
    if( ret != -1 ) return ret;
    ret = __builtin_popcount(mask);
    for( int pos = 0 ; pos < 12 ; pos ++ )
    {
         if( pos < 10 && check(mask,pos) && check(mask,pos+1) && !check(mask,pos+2)){
              int newmask = mask;
              off(newmask,pos) , off( newmask , pos +1 ) , on(newmask,pos+2);
              ret = min( ret , solve(newmask));
         }
         if( pos > 1 && check(mask,pos) && check(mask,pos-1) && !check(mask,pos-2)){
             int newmask = mask;
             off(newmask,pos) , off( newmask , pos-1 ) , on(newmask,pos-2);
             ret = min( ret , solve(newmask));
         }
   }
   return ret;
}
int main()
{
    int test , cs = 1 ;
    char s[20];
    scanf("%d",&test);
    while(test--)
    {
      scanf("%s",&s);
      memset(dp,-1,sizeof dp);
      int mask = 0 ;
      for(int i = 0 ; s[i] ; i++ ) if( s[i] == 'o') on(mask,i);
      int ret = solve(mask);
      printf("%d\n",ret);
    }
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

Yet Another Cute Girl - PRETNUM

Problem Link #include <iostream> #include <cstring> #include <cmath> #include <vector> using namespace std; #define LL long long const int N = 1000010; bool prime[N + 1]; vector<int> v; void sieve() { for(int i = 2; i <= N; i++) { prime[i] = true; } for(int i = 2; i * i <= N; i++) { if(prime[i]) { for(int j = i * i; j <= N; j += i) { prime[j] = false; } } } v.push_back(2); for(int i = 3; i <= N; i += 2) { if(prime[i]) { v.push_back(i); } } } LL getNumDiv(LL num) {     /* if prime factor of n is p1^k1 p2 ^ k2 then prime factor of n^2 would be         (p1^k1 p2 ^ k2)^2 = p1^(2k1) p2^(2k2)         so number of divisors of n^2 would be (2 * k1 + 1) * (2 * k2 + 1) ...         if n is a prime number number then number of divisors of n^2 would be 3.     */ LL res = 1; for(int i = 0;...

ANARC09A

ANARC09A - Seinfeld #include <iostream> #include <stack> using namespace std; stack<char> st; int main() {     string s;     int c, k;     k = 1;     while(true)     {         cin >> s;         c = 0;         if(s[0] == '-')             break;         for(int i = 0; i < s.size(); i++)         {             st.push(s[i]);             //stack contains } and { then we can safely remove them from stack             if(st.top() == '}' && st.size() != 1)             {                 char a = st.top();               ...