Skip to main content

Count K-Primes-KPRIME

Problem Link
#include <iostream>
#include <cstring>
using namespace std;

const int N = 100000;
int div1[N + 1];
int dp[N + 1][6];

void sieve()
{
    memset(div1, 0, sizeof div1);

    for(int i = 2; i <= N; i++)
    {
        if(div1[i] == 0)
        {
            for(int j = i; j <= N; j += i)
            {
                div1[j]++;
            }
        }
    }

// precompute number of k-prime before i

    for(int i = 2; i <= N; i++)
    {
        for(int k = 1; k <= 5; k++)
        {
            dp[i][k] = dp[i - 1][k] + (div1[i] == k?1:0);
        }
    }

}

int main()
{
    int t, a, b, k, res;

    sieve();
    cin >> t;
    while(t--)
    {
        cin >> a >> b >> k;
        res = 0;

        res = dp[b][k] - dp[a - 1][k];

        cout << res << endl;

    }

    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec and it will not cause any problem .     problem may occur if pos[i - 1]< (B -T)*2 as it can me

War of XORs- XORIER

Problem Link #include <iostream> using namespace std; int main() { int t, n, odd, even; cin >> t; while(t--) { cin >> n; int i,arr[n],freq[1100001]={0}; long res = 0; odd = even = 0; for(int i = 0; i < n; i++) { cin >> arr[i]; freq[arr[i]]++; } for(int i = 0; i < n; i++) { if(arr[i] & 1) { odd++; } else { even++; } } for(int i = 0; i < n; i++) { if(arr[i] % 2) { res += odd; } else { res += even; } res -= freq[arr[i] ^ 2]; res -= freq[arr[i]]; } cout << res / 2 << endl; } }

MAIN72

MAIN72 - Subset sum #include <iostream> #include <cstring> using namespace std; bool dp[100001][1001]; int arr[1001]; int main() {     int t, n;     long long int sum;     cin >> t;     while(t--)     {         cin >> n;         memset(dp, false, sizeof(dp));         sum = 0;         for(int i = 0; i < n; i++)         {             cin >> arr[i];             sum += arr[i];         }         for(int i = 0; i < n; i++)             dp[0][i] = true; // 0 sum         for(int i = 1; i < n; i++)             dp[i][0] = false; // sum is i but 0 element         for(long int i = 1; i <= sum; i++)         {             for(int j = 1; j <= n; j ++)             {                 dp[i][j] = dp[i][j - 1];                 if(i >= arr[j - 1])                     dp[i][j] = dp[i][j] || dp[i - arr[j - 1]][j - 1];             }         }         long int result = 0;         for(int i = 1; i <= sum; i++)