Skip to main content

Dividing Machine- DIVMAC

Problem Link

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

#define LL long long
#define sf(i) scanf("%d", &i)
#define pf(i) printf("%d ", i);
const int N = 1000000;
const int M = 100000;
int leastPrime[N + 1];
bool prime[N + 1];

int arr[M + 1];
int seg[3 * M];


void sieve()
{
    memset(prime, true, sizeof prime);
   for(int i = 0; i <= N; i++)
   {
       leastPrime[i] = N;
   }

    for(int i = 2; i * i <= N; i++)
    {
        if(prime[i])
        {
            for(int j = i * i; j <= N; j += i)
            {
                prime[j] = false;
                leastPrime[j] = min(i, leastPrime[j]);
            }
        }
    }

    leastPrime[0] = 1;
    leastPrime[1] = 1;
    leastPrime[2] = 2;
    for(int i = 3; i <= N; i+= 2)
    {
        if(prime[i])
        {
            leastPrime[i] = i;
        }
    }
}

void buildTree(LL index, int low, int high)
{
    if(low > high)
        return;
    if(low == high)
    {
        seg[index] = leastPrime[arr[low]];
    }
    else
    {
        int mid = (low + high) / 2;
        buildTree(2 * index + 1, low, mid);
        buildTree(2 * index + 2, mid + 1, high);

        seg[index] = max(seg[2 * index + 1], seg[2 * index + 2]);
    }
}

void updateTree(int low, int high, int l, int r, LL index)
{
    if(seg[index] == 1)
        return ;
    if(low > r || high < l || low > high)
        return;
    if(low == high)
    {
        int val;
        if(leastPrime[arr[low]] != 0)
        {
            val = arr[low] / leastPrime[arr[low]];
            arr[low] = val;
            seg[index] = leastPrime[val];
        }
        else
        {
            seg[index] = 1;
        }

    }
    else
    {
        int mid = (low + high) / 2;
        updateTree(low, mid, l, r, 2 * index + 1);
        updateTree(mid + 1, high, l, r, 2 * index + 2);

        seg[index] = max(seg[2 * index + 1], seg[2 * index + 2]);
    }
}

int getVal(int low, int high, int ql, int qh, LL index)
{
    if(seg[index] == 1)
        return 1;
    if(ql <= low && qh >= high)
    {
        return seg[index];
    }
    if(ql > high || qh < low || low > high)
    {
        return 0;
    }

    int mid = (low + high) / 2;
    return max(getVal(low, mid, ql, qh, 2 * index + 1), getVal(mid + 1, high, ql, qh, 2 * index + 2));
}

int main()
{
    int t;
    int n, m, type, l, r;

    sieve();

    sf(t);
    while(t--)
    {
        sf(n), sf(m);
        for(int i = 0; i < n; i++)
        {
            sf(arr[i]);
        }

        buildTree(0, 0, n - 1);

        for(int i = 0; i < m; i++)
        {
            sf(type), sf(l), sf(r);
            if(type == 1)
            {
                int res =  getVal(0, n - 1, l - 1, r - 1, 0);
                pf(res);

            }
            else
            {
                updateTree(0, n - 1, l - 1, r - 1, 0);
            }
        }

        printf("\n");
    }
    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec and it will not cause any problem .     problem may occur if pos[i - 1]< (B -T)*2 as it can me

War of XORs- XORIER

Problem Link #include <iostream> using namespace std; int main() { int t, n, odd, even; cin >> t; while(t--) { cin >> n; int i,arr[n],freq[1100001]={0}; long res = 0; odd = even = 0; for(int i = 0; i < n; i++) { cin >> arr[i]; freq[arr[i]]++; } for(int i = 0; i < n; i++) { if(arr[i] & 1) { odd++; } else { even++; } } for(int i = 0; i < n; i++) { if(arr[i] % 2) { res += odd; } else { res += even; } res -= freq[arr[i] ^ 2]; res -= freq[arr[i]]; } cout << res / 2 << endl; } }

MAIN72

MAIN72 - Subset sum #include <iostream> #include <cstring> using namespace std; bool dp[100001][1001]; int arr[1001]; int main() {     int t, n;     long long int sum;     cin >> t;     while(t--)     {         cin >> n;         memset(dp, false, sizeof(dp));         sum = 0;         for(int i = 0; i < n; i++)         {             cin >> arr[i];             sum += arr[i];         }         for(int i = 0; i < n; i++)             dp[0][i] = true; // 0 sum         for(int i = 1; i < n; i++)             dp[i][0] = false; // sum is i but 0 element         for(long int i = 1; i <= sum; i++)         {             for(int j = 1; j <= n; j ++)             {                 dp[i][j] = dp[i][j - 1];                 if(i >= arr[j - 1])                     dp[i][j] = dp[i][j] || dp[i - arr[j - 1]][j - 1];             }         }         long int result = 0;         for(int i = 1; i <= sum; i++)