Skip to main content

Dividing Machine- DIVMAC

Problem Link

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

#define LL long long
#define sf(i) scanf("%d", &i)
#define pf(i) printf("%d ", i);
const int N = 1000000;
const int M = 100000;
int leastPrime[N + 1];
bool prime[N + 1];

int arr[M + 1];
int seg[3 * M];


void sieve()
{
    memset(prime, true, sizeof prime);
   for(int i = 0; i <= N; i++)
   {
       leastPrime[i] = N;
   }

    for(int i = 2; i * i <= N; i++)
    {
        if(prime[i])
        {
            for(int j = i * i; j <= N; j += i)
            {
                prime[j] = false;
                leastPrime[j] = min(i, leastPrime[j]);
            }
        }
    }

    leastPrime[0] = 1;
    leastPrime[1] = 1;
    leastPrime[2] = 2;
    for(int i = 3; i <= N; i+= 2)
    {
        if(prime[i])
        {
            leastPrime[i] = i;
        }
    }
}

void buildTree(LL index, int low, int high)
{
    if(low > high)
        return;
    if(low == high)
    {
        seg[index] = leastPrime[arr[low]];
    }
    else
    {
        int mid = (low + high) / 2;
        buildTree(2 * index + 1, low, mid);
        buildTree(2 * index + 2, mid + 1, high);

        seg[index] = max(seg[2 * index + 1], seg[2 * index + 2]);
    }
}

void updateTree(int low, int high, int l, int r, LL index)
{
    if(seg[index] == 1)
        return ;
    if(low > r || high < l || low > high)
        return;
    if(low == high)
    {
        int val;
        if(leastPrime[arr[low]] != 0)
        {
            val = arr[low] / leastPrime[arr[low]];
            arr[low] = val;
            seg[index] = leastPrime[val];
        }
        else
        {
            seg[index] = 1;
        }

    }
    else
    {
        int mid = (low + high) / 2;
        updateTree(low, mid, l, r, 2 * index + 1);
        updateTree(mid + 1, high, l, r, 2 * index + 2);

        seg[index] = max(seg[2 * index + 1], seg[2 * index + 2]);
    }
}

int getVal(int low, int high, int ql, int qh, LL index)
{
    if(seg[index] == 1)
        return 1;
    if(ql <= low && qh >= high)
    {
        return seg[index];
    }
    if(ql > high || qh < low || low > high)
    {
        return 0;
    }

    int mid = (low + high) / 2;
    return max(getVal(low, mid, ql, qh, 2 * index + 1), getVal(mid + 1, high, ql, qh, 2 * index + 2));
}

int main()
{
    int t;
    int n, m, type, l, r;

    sieve();

    sf(t);
    while(t--)
    {
        sf(n), sf(m);
        for(int i = 0; i < n; i++)
        {
            sf(arr[i]);
        }

        buildTree(0, 0, n - 1);

        for(int i = 0; i < m; i++)
        {
            sf(type), sf(l), sf(r);
            if(type == 1)
            {
                int res =  getVal(0, n - 1, l - 1, r - 1, 0);
                pf(res);

            }
            else
            {
                updateTree(0, n - 1, l - 1, r - 1, 0);
            }
        }

        printf("\n");
    }
    return 0;
}

Comments

Popular posts from this blog

GCJ101BB - Picking Up Chicks

Problem Link /* explanation     lets solve the problem only for 2 chicken.     s[i] = speed of chicken i     pos[i] = position of chicken i     if s[i] > s[i - 1] then no problem, just check whether both can reach b within time or not.     if s[i] < s[i - 1] then there is a chance that i can slow down i - 1.     lets say s[i] = 1 m/sec and s[i - 1] = 2 m/sec and time limit is T and point to reach is B.     for s[i] pos[i] can be at max B - T. if pos is greater than B-T it can not reach within Tsec.     and for s[i - 1] pos[i - 1] can be at max (B-T)*2. if pos[i - 1] > (B-T)*2 it can not reach within Tsec.     at T sec i will be at B and i - 1 will also be at B. at T - 1 i will be at B-T-1 and i-1 will be at B-T-2 and so on. as we can see i -1 will always be behind i. so there will not be any collision.     if i is pos[i] < B-T then i can reach B before T sec ...

KOPC12A

KOPC12A - K12 - Building Construction #include <iostream> #include <cmath> #define REP(i, n) for(int i = 0; i < n; i++) using namespace std; const int N = 10005; int height[N]; int cost[N]; int n; //finds the total cost for height h long long int findCost(int h) {     long long c = 0; //cost     REP(i, n)     {         c += abs(h - height[i]) * cost[i];     }     return c; } int ternary_search(int l, int h) {     while(l <= h)     {         if(l == h)             break;         int mid1 = l + (h - l) / 3;         int mid2 = h - (h - l) / 3;         if(findCost(mid1) > findCost(mid2))             l = mid1 + 1;         else ...

Cheese and Random Toppings

Problem Link #include <iostream> #include <vector> #include <cstring> using namespace std; #define LL long long int LL lucas(LL n,LL r,LL p) { LL ans=1,ncr[p][p]; memset(ncr, 0, sizeof ncr); for (int i = 0; i < p; ++i) { ncr[i][0]=1; } for (int i = 1; i < p; ++i) { for (int j = 1; j <= i; ++j) { ncr[i][j]=(ncr[i-1][j] + ncr[i-1][j-1])%p; } } while(n && r) { ans=(ans * ncr[n%p][r%p])%p; n/=p; r/=p; } return ans; } LL fastExpo(LL a, LL b, LL P) {   LL res = 1;   if(b==0) return 1; if(b==1) return a;   while (b) {     if (b & 1) {       res = (res * a) % P;     }     a = (a * a) % P;     b = b >> 1;   }   return res; } int main() { int t; cin>>t; while(t--) { long long int n,r,m,tm,ans=0; cin>>n>>r>>m; tm=m; for (int i = 2; i <= 50; ++i...